
LECTURE 26 MEAN VALUE THEOREM

Before we continue with the consequence of the mean value theorem, we go through a quick example
showcasing some common sense about projectile.

Example. The range R of a projectile launched on the ground, i.e. horizontal distance travelled, satis�es

R =
v20
g

sin (2θ)

where v0 > 0 is the known initial launch velocity, g the gravitational acceleration, and θ the launch angle.
Show that to maximize range, we should launch at θ = π

4 .

Solution. Now, launch angle goes between [0, π]. We maximize R on this interval. First, we �nd the critical
points that satisfy

dR

dθ
=
v20
g
2 cos (2θ) = 0 =⇒ 2θ =

π

2
=⇒ θ =

π

4
.

Then, we evaluate the critical point and the endpoints.

R (0) = 0

R (π) = 0

R
(π
4

)
=
v20
g
> 0

which means θ = π
4 maximizes R.

Now, we continue with the consequence of the mean value theorem. We restate the theorem for recall.

Theorem. (Mean Value Theorem) If f is continuous on [a, b] and di�erentiable on (a, b), then there exists
a number c ∈ (a, b) such that

f ′ (c) =
f (b)− f (a)

b− a
.

Remark. Note that di�erentiability is NOT needed at x = a and x = b, only left and right continuity
respectively.

Another interpretation is that the average rate of change must be equal to the instantaneous rate of
change somewhere between. In fact, many real world problems can lead to nice conclusions using the mean
value theorem. We see its usage in detecting speeding cars!

Example. This very fact also explains how electronic cameras can decide whether a car has sped or not.
Consider two cameras placed 1 mile apart on a highway with speed limit 60 miles/hour. Now, consider time
t as our independent variable and car position x (t) as our dependent variable. Denote t1 and t2 as the
time the car reaches camera 1 and 2 respectively. Suppose x is a continuous function of t on [t1, t2] and
di�erentiable on (t1, t2), then we have by mean value theorem that there exists some time s ∈ (t1, t2) such
that

x′ (s) =
x (t2)− x (t1)

t2 − t1
=

1

t2 − t1
.

The camera will have access to the time di�erence t2 − t1. Therefore, it is able to compute 1
t2−t1 and thus

knows there is de�nitely one point at which the car is travelling at 1
t2−t1 . Now, suppose t2 − t1 is measured

in seconds, we convert it to hours by writing t2−t1
3600 . Therefore, if the cameras detect

3600

t2 − t1
> 60,

the car is guaranteed to have sped at some point between the two cameras.

The next result is a direct consequence of the mean value theorem, though the result itself may seem
trivial, yet it is not.
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Corollary. If f ′ (x) = 0 at every point x of an open interval (a, b), then f (x) = C for all x ∈ (a, b), where
C is a constant.

Proof. Note that f satis�es the hypothesis of the mean value theorem. We wish to show f (x1) = f (x2)
with x1 < x2 for any two points on (a, b).

Indeed, by the mean value theorem, for any two points x1 < x2 on (a, b), there must be a point y ∈ (x1, x2)
such that

0 = f ′ (y) =
f (x2)− f (x1)

x2 − x1
=⇒ f (x2) = f (x1) .

�

When two functions have the same derivative, can we relate the two functions themselves?

Corollary. If f ′ (x) = g′ (x) at every point x ∈ (a, b), then there exists a constant C such that f (x) =
g (x) + C for all x ∈ (a, b).

Proof. De�ne h (x) = f (x)− g (x) and we note h′ (x) = 0. Then by the previous corollary, we are done. �

Example. Suppose that f (0) = 5 and that f ′ (x) = 2 for all x. Must f (x) = 2x+5 for all x? Give reasons
for your answer.

Solution. We assume that we have no integration knowledge but only the two corollaries above. We don't
know what f (x) looks like. The idea is to cook up a function g (x) such that g′ (x) = 2 and use the last
corollary. We �nd that g (x) = 2x will work. Thus, we �nd that f ′ (x) = g′ (x) for all x. Therefore,

f (x) = g (x) + C = 2x+ C.

We can solve for C by using f (0) = 5 which shows that C = 5. Thus f (x) = 2x+ 5.

Next, we go on to Section 4.3 and study a particular type of functions useful in determining the behaviour
of more complicated functions.

De�nition. We say that f is monotone increasing on an interval I if we have f (x1) < f (x2) (resp.
monotone decreasing with >), for every x1 < x2 in I.

Corollary. If f is continuous on [a, b] and di�erentiable on (a, b), and if f ′ (x) > 0 for every x ∈ (a, b),
then f is monotone increasing (resp. < 0, monotone decreasing).

Proof. This again, is a direct consequence of the mean value theorem. For any two points x1 < x2 on (a, b),
there is some point c such that

f (x2)− f (x1) = f ′ (c) (x2 − x1) .
Since f ′ (x) > 0 and also x2 > x1, the RHS is positive, which implies f (x2)−f (x1) > 0 =⇒ f (x1) < f (x2) ,
namely, f is monotone increasing. The proof for monotone decreasing is similar. �

Example. Find the critical points of f (x) = x3 − 12x − 5 and identify the open intervals on which f is
increasing and on which f is decreasing.

Solution. We �nd that the critical points satisfy

0 = f ′ (x) = 3x2 − 12 =⇒ x = ±2.
We then create nonoverlapping intervals (−∞,−2), (−2, 2) and (2,∞). We plug in convenient values from
each interval to check the sign of f

f ′ (−3) = 3 (−3)2 − 12 = 15 > 0

f ′ (0) = −12 < 0

f ′ (3) = 3 (3)
2 − 12 = 15 > 0

We did �rst derivative test already. At a critical point x = c,

(1) if f ′ changes from negative to positive at c, then f has a local minimum at x = c.
(2) if f ′ changes from positive to negative at c, then f has a local maximum at x = c.
(3) if f ′ does not change sign (that is, f ′ has the same sign on both sides of c), then f has no local

extremum at c.


